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Abstract—Perceptual image quality assessment (IQA) plays
an important role in numerous applications, including image
restoration, compression, enhancement, and others. Although
many works have been conducted on individually distorted IQA
problems and have achieved encouraging results, few studies have
been conducted on multiple distorted (MD) IQA problems. Thus,
limited progress has been made. In this paper, we propose a
novel no reference image quality assessment (NR-IQA) method,
named improved multi-scale local binary pattern (IMLBP), for
addressing multiply distorted IQA problems. The image struc-
tures are sensitive to image distortions, which motivates us to
utilize the structural characteristics for overall image quality
prediction. We improved the local binary pattern (LBP) by
considering the human visual mechanism to better extract the
structural information. The IMLBP contains two parts, the LBP
and the radius difference LBP (DLBP). The DLBP reflects the
values’ changes in the radial direction. Specifically, when the
radius value is small, the proposed descriptor is computed to
represent microstructural information. Conversely, it represents
macrostructural information when the radius becomes large.
Moreover, to better mimick the human visual mechanism, the
IMLBP is computed with the multi-scale strategy and the
operation is based on a patch unit whose size is proportional
to the radius value. The frequency histogram of feature maps
is transformed to feature vectors. Subsequently, a predictable
function trained by the support vector regression (SVR) is used to
infer the overall quality score. Experimental results show that the
proposed method outperforms most state-of-the-art IQA metrics
on publicly available multiply distorted image databases.

Index Terms—Image quality assessment (IQA), multiple dis-
tortions, local binary pattern (LBP), no reference (NR).

I. INTRODUCTION

W ITH the explosive development of visual acquisition,
display and processing technologies, digital images

have become ubiquitous in our life. However, they may suffer
multiple distortions during their acquisition, processing and
transmission [1]–[3]. IQA, as the benchmark for evaluating the
degree of quality degradation, has monitored and improved the
quality of consumer products and networking infrastructures.
Based on the availability of human beings, IQA is divided into
subjective and objective categories. Objective assessment has
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more advantages than subjective assessment, which is accurate
but time consuming and expensive. To date, several existing
works have been conducted to develop a universal objective
assessment metric that takes us a step closer to the ultimate
perceptual experience of human observers [4]–[8].

Generally, according to the availability of reference in-
formation, objective IQA metrics can be categorized into
three types: full reference (FR), reduced reference (RR) and
no reference (NR) metrics. Since the reference information
is usually not available, IQA metrics that do not rely on
reference information (e.g., NR-IQA) will be the mainstream
direction of future research. Existing general-purpose NR-
IQA algorithms are always based on the hypothesis that the
extracted features should effectively represent the distorted
type and degree. Hence, feature extraction is the key issue for
building a high-performance NR-IQA algorithm. According
to the extracted features, previous metrics usually follow
one of the subsequent two categories: natural scene statistic
(NSS)-based approaches and learning-based approaches [9]–
[11]. Those NSS-based approaches assume that natural scenes
possess certain statistical properties. Statistical models (such
as general Gaussian distributions) are used to the characterize
statistical properties of cosines [12], contourlet coefficients
[13] and wavelets [14]. To some extent, the variation of the
model’s parameters reflects the degree of introduced distortion.
The learning-based approaches depend on a large number
of quality-aware features. Then, NR-IQA problem can be
attributed as a regression problem via neural network learning.
Various regression techniques, such as the SVR [15] and the
random forest [16], were applied to learn the mapping from
the feature space to the image quality space.

Currently, great achievement has been made in single dis-
torted IQA, while MD IQA has remained in the initial stages.
Since an image usually suffers from multiple distortions in
practical applications, it is more meaningful to propose an
effective MD IQA method. In [17], features that are sensitive
to each distortion type were first selected. Next, the correlation
was analyzed between the feature and distortion type for
better feature extraction and selection. Then, codebooks for
different distortion types were constructed to form the bag of
words (BoW), which was regarded as the representation of
the image. Finally, the image quality can be predicted by the
linear combination of each dimension of the BoW. Similarity,
Li et al. [18] extracted quantities of features from four cate-
gorically distorted images. However, a physical combination
of individually distorted features may not well explain the
final quality since the individual distortion may have joint
effects [19]. Inspired by it, Gu et al. [20] successfully analyzed
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the noise strength, blur and JPEG effects, before the free
energy term was added in order to consider the possible
interaction of different distortions. In [21], Li et al. extracted
the LBP features in the gradient domain and used the gradient
amplitude as the weight to constitute the feature vectors as the
input of the SVR model.

In this paper, we propose a novel objective NR-IQA metric
for multiple distorted images without any prior knowledge
of distortion combination in an image. The major technical
contributions of this work are summarized here. First, moti-
vated by the human visual mechanism, the LBP descriptor
is improved to better represent the structural information.
Especially, instead of individual pixel gray values at sample
points, the image patches centered at the sampling locations
are used during the LBP map computation to avoid information
loss. Second, the improved LBP descriptor is multi-scale based
on reflecting both the microstructural and macrostructural
information. The LBP map with a small radius is extracted
to encode the image’s primitive microstructure. Meanwhile,
the DLBP map (which reflects the gray values’ change in
radial direction) together with the LBP map with a large
radius are extracted to encode the macrostructure. Third, the
frequency histograms of the LBP and DLBP maps are encoded
to form the concatenated histogram, which is transformed as
the input of the SVR model. The experimental results on public
multiple distortion databases demonstrate that the proposed
method outperforms the state-of-the-art methods in the MD
IQA problem.

The remainder of this paper is organized as follows. Section
II describes the LBP algorithm and its applications in the
NR-IQA. The proposed method is fully introduced in Section
III. The experimental results and discussions are presented in
Section IV. Finally, the conclusion is given in Section V.

II. RELATED WORKS

A. LBP Descriptor
The LBP descriptor [22] has been widely used in facial

recognition [23] and texture classification [24]. Since quality
degradation usually distorts the image structure, the LBP
that describes the local structure by encoding the image into
matrix, can be applied to the IQA problem. It describes the
relationship between the center pixel nc and its surrounding
neighbors by computing the gray-level difference. It can be
expressed as:

LBPP,R =
P−1∑
i=0

s(I(ni), I(nc)) · 2i (1)

where P is the number of neighbors, which controls the
quantization of the angular space. R is the radius of the
neighbors that determines the spatial resolution, as shown in
Fig. 1(a). I(nc) denotes the gray value of the center pixel nc,
while I(ni), i = {0, 1, 2, 3, · · · , P -1} denotes the gray value
of circularly symmetric neighbor pixel ni. The binomial factor
2i is used to encode each sampling location. The thresholding
function s(·, ·) is defined as:

s(I(ni), I(nc)) =

{
1, if I(ni)− I(nc) ≥ T
0, if I(ni)− I(nc) < T

(2)

The threshold T is usually set as zero. By definition, the
LBP only has gray invariance and does not have rotational
invariance with uniform patterns. Fortunately, this problem can
be tackled by the uniformity measure [22]. Then, the rotational
invariant uniform LBP can be formulated as:

LBP riu2
P,R =

{
P−1∑
i=0

s(I(ni), I(nc)) , if µ(LBPP,R) ≤ 2

P + 1 , otherwise
(3)

where the superscript riu2 denotes the rotational invariant
uniform patterns when the uniform measure µ is less than 2.
Formally, µ is calculated as the number of bitwise transitions:

µ(LBPP,R) = ‖s(I(nP−1), I(nc))− s(I(n0), I(nc))‖

+

P−1∑
i=1

‖s(I(ni), I(nc))− s(I(ni−1), I(nc))‖
. (4)

From Eqs. (3)-(4), it can be intuitively observed that the
uniform LBP map would have P+2 patterns.

B. LBP Applications in NR-IQA

As the distortion may induce the loss of the structural and
textural information, it is crucial to unearth and exploit the
features that reflect the image’s distortion. Currently, many
descriptors (such as SIFT, Harris and LBP) have been reported
for image feature extraction. Compared to LBP, SIFT and
Harris aim to detect local key points, whose positions and
numbers vary according to different image contents. For a
distorted image and its reference, their detected key points may
be different, which must increase the difficulty in designing
IQA models. Besides, key points only contain the information
in the special location rather the whole information of an
image, and this usually makes the IQA model overlook crucial
information. Therefore, SIFT and Harris may be not well
suitable for IQA. On the contrary, LBP does not rely on
key points and can represent image characteristics well by
numerical statistics of all pixels. To date, several works have
tried to integrate the LBP descriptor into IQA metrics [21],
[25]–[27].

In [25], the features extracted from LBP were regarded
as complementary factors to improve the final performance.
The structural degradation was computed by measuring the
change of each bin in the histograms between the reference
and distorted images. Similarly, Zhang et al. [26] first de-
composed the image into multiple-scales using the Laplacian
of Gaussian (LoG) filters. Then, each sub-band image was
encoded using the proposed generative LBP and concentrated
the joint histograms finally. Although the LBP descriptor has
made remarkable progress in the extraction of local structure
information, it still has inherent drawbacks. For one, the
high-order information is ignored since it only encodes the
binary result of the first-order derivative among the neighbors.
Moreover, LBP is incapable of describing the directional
information. Considering such shortcomings, Du et al. [27]
took the LBP as the tool of first-order derivative information
and extracted more high-order local derivative patterns to form
the final feature vectors. The results demonstrated that the
experimental performance was greatly improved owing to the
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complement of high-order information. To further reduce the
computational complexity and access better performance, Li
et al. [21] proposed a novel structural extractor named the
GWH-GLBP. First, it calculated the gradient map. Then, the
gradient LBP map was accumulated using the gradient-weight
of the histogram to better represent the structural and contrast
information. Finally, the SVR was adopted to map the feature
space to a quality score. The experimental results showed that
GWH-GLBP achieved encouraging results on the MD IQA. In
summary, the above works validate that the LBP can definitely
prompt IQA studies.

III. THE PROPOSED NR-IQA METHOD

This section includes two subsections: 1) multi-scale im-
proved LBP descriptor and its application to IQA; 2) im-
age quality estimation. Specifically, the multi-scale improved
descriptor is composed of the LBP descriptor and DLBP
descriptor with multiple scales. Moreover, each operation is
conducted based on a patch unit, whose size is proportional
to the distance between the sampling point and the centered
point in order to better mimic the visual mechanism.

A. Multi-scale Improved LBP Descriptor and Its Application
to IQA

Fig. 1(a) is the diagram of the LBP descriptor. By defini-
tion, the LBP describes the relationship between the center
point and its surrounding neighbors and only reflects the
microstructure of the image when the radius is small. With the
radius increasing, it can reflect macrostructural information to
some extent. However, the distance between adjacent sampling
points becomes larger as the radius increases if the LBP
calculation is still pixel based. As a result, the performance
of feature maps might be reduced since most pixels are not
included in the computation, leading to information loss. In
this paper, we improve the LBP by mimicking the human
visual mechanism.

(a) (b) (c)

Fig. 1. (a) Standard LBP descriptor. (b) Critical spacing. (Figure adapted
from ref. [28]). (c) Improved LBP descriptor.

Human eyes capture the information of both the fixated
individual point and its peripheral points when gazing at a
point [28]. To be specific, a target may be strongly degraded by
the simultaneous presentation of flanking objects. To allow for
the unimpaired perception of the target, the distance between
the fixated target and the flanking objects is defined as the
critical spacing [28]. The critical spacing (which may reflect
the minimum area of visual attention) grows in proportion to
the object’s distance from the fixated target [29]. The sizes

of the interaction regions linearly varies with eccentricity and
spatial interaction zones appear to be radially elongated with
elliptical shapes, as shown in Fig. 1(b). Inspired by these, we
modify the LBP descriptor by replacing the individual pixel
gray value at the sampling point with a simple filtered response
that is derived from source image patches centered on the
sampling location, as shown in Fig. 1(c). Since the interaction
space is elliptical, we simply utilize the square patch to reflect
the shape characteristic. To be more specific, the I(ni) is
replaced by the filtered response of square patch centered at
ni in the LBP calculation. Formally, given a center pixel nc
and a patch filter Φ, the rotational invariant LBP descriptor is
redefined as:

LBP riu2
P,R =

{
P−1∑
i=0

s(Φ(Ni,R,ωR
), nc) , if µ(LBPP,R) ≤ 2

P + 1 , otherwise
(5)

where Ni,R,ωR
, i = {0, 1, 2, 3, . . ., P -1} denotes the circularly

symmetric local patch with size ωR × ωR centered at the
neighboring sampling point ni with distance R (i.e., the radius
value) from the centered pixel nc. In this paper, we follow
[21] and set P as 8. Φ(Ni,R,ωR

) is the filtered response of
patch Ni,R,ωR

centered at ni. Since the distance between the
adjacent sampling points increases as the radius increases,
the patch size should be changed with respect to the radius’s
value change. In this paper, the patch size is proportional to
the radius since the shape of the interaction space is radially
elongated [30]. We empirically set ωR = R − 1 and use a
median filter. Then, the uniform measure, µ, is redefined as:

µ(LBPP,R) = ‖s(Φ(NP−1,R,ωR
), I(nc))− s(Φ(N0,R,ωR

), I(nc))‖

+

P−1∑
i=1

‖s(Φ(Ni,R,ωR
), I(nc))− s(Φ(Ni−1,R,ωR

), I(nc))‖
.

(6)
In addition, as the density of photopic retinal photoreceptors

rapidly decreases with the distance away from the fovea, the
discrimination ability falls off rapidly [31], [32]. Therefore, we
also pay more attention to the relationship between different
gray values in the radial directions. To mimic this charac-
teristic, we employ the DLBP descriptor. To specify, unlike
the LBP descriptor calculating the difference value between
the sampling point and center point, the DLBP descriptor
computes the difference value between sampling points in
the radial directions. Considering the visual mechanism, the
sampling point value is also processed by filter patch, as shown
in Fig. 2(b). The DLBP descriptor is formulated as:

DLBPP,R(nc) =
P−1∑
i=0

s(Φ(Ni,R,ωR
,Φ(Ni,R−1,ωR−1

)) · 2i

(7)
where Ni,R−1,ωR−1

denotes the patch centered at the neigh-
boring sampling point ni with distance R-1 from the centered
pixel nc. Similar to the LBP, we also apply the strategy for
obtaining LBP riu2

P,R to the DLBP. By computing DLBP, the
relationship between interaction spaces in radial direction is
highly considered. Similar to the LBP, it reflects macrostruc-
tural information when the radius is large. To fully extract
both the microstructural and macrostructural information, in
this paper, both the improved LBP and DLBP descriptors are
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Fig. 2. Flow chart of feature extraction. (a) The input image; (b) The multi-scale improved LBP descriptor; (c) LBP and DLBP features at different scales
and the corresponding joint histograms; (d) Final concentrated histograms.

operated with multiple radiuses. Fig. 2(b) illustrates the simple
diagram of the proposed descriptor.

After the extraction of the LBP and DLBP feature maps,
the frequency histogram of each map is calculated. Generally,
a frequency histogram is composed of various elements and
is defined as:

hj,M
M∈LBP,DLBP

= Nj,M/NM , j = 1, 2, 3, . . . , P + 2 (8)

where the subscript M denotes the category of the feature map.
j is the selected value in the feature map with a maximum
value of P+2 and a minimum value of 1. NM is the pixel
number of the corresponding feature map, while Nj,M is the
pixel number of the j-th value of feature map. Then, the joint
histogram HJ is expressed by combining the LBP histogram
and DLBP histogram together, HJ = [HLBP , HDLBP ]. Fi-
nally, the concentrated histogram is combined by all joint
histograms in multiple radiuses, Hc = {HJ1 , HJ2 , · · · , HJn},
where HJn denotes the joint histogram when radius is n. Figs.
2(c)-(d) show the generation procedure of feature.

To manifest the potential of the proposed method on IQA
problem, a simple test was conducted on an image named
baby 1. The image, as shown in Fig. 3, was first corrupted by
Gaussian filter and then distorted by JPEG compression. The
LBP feature maps of pristine and distorted images are depicted
in Figs. 4(a)-(c). All the sub-figures keep to the following
arrangement. The first row contains LBP maps (from the left
to right represent maps with radius value of 2 to 6 at an interval
of 2 pixels). The second row is the DLBP maps with the same
arrangement as the first row. Through the comparison among
these figures, we can find that the feature maps (the LBP and
DLBP maps) change with respect to different distortions. To
be more specific, the LBP and DLBP maps generated from
the pristine image contain rich detailed information. While, the
image structure is damaged and is full of block effects when it
is mainly distorted by JPEG, as shown in Fig. 4(b). Likewise,
the marginal zone is decayed when it is mainly distorted by
Gblur, as shown in Fig. 4(c).

1The image is downloaded from Internet and the copyright belongs to
its rightful owners. The authors do not claim ownership. No copyright
infringement is intended.

To further demonstrate the distortion effect on joint his-
togram, we introduce another example, as shown in Fig. 5.
We corrupt the baby image and obtain another two distorted
images by Gblur+JPEG distortion. Fig. 5(a) represents the
joint histograms of reference image (baby), while Figs. 5(b)-
5(c) are the joint histograms of Gblur+JPEG distorted images.
Each joint histogram contains two parts, which are the patterns
of the LBP and DLBP. Among them, (1-10) represent the
LBP patterns; (11-20) represent the DLBP patterns. Note that,
compared to Fig. 5(b), Fig. 5(c) is the joint histograms of
image that suffers from more serious Gblur distortion while
contains equivalent intensity of JPEG distortion. As can be
seen, with the distortion degree increased, the joint histogram
changes. Specifically, taking the joint histograms of ‘R2P8’ as
an example, patterns 1-4, 7, 11-14 and 17, gradually decline
as the distortion degree increasing. Similar characteristics can
be also observed in cases of ‘R4P8’ and ‘R6P8’. Therefore,
the joint histograms, to some extent, can reflect the degree of
image distortion as does the concentrated histogram. Based
on the above analysis, we have a reason to trust that the
concentrated histograms can be used for solving the MD IQA
problem.

Fig. 3. Three versions of the image named baby: (a) reference image, (b) and
(c) are images corrupted by Gblur + JPEG. Note that (b) is mainly distorted
by JPEG, while (c) is mainly distorted by Gblur.

B. Image Quality Estimation

Broadly speaking, mainstream NR-IQA metrics rely on
the prior knowledge of the distortion category and degree.
Machine learning is an effective technology to discover and ex-
ploit prior knowledge to build a good connection between the
features extracted and the quality score to be predicted. Many
NR-IQA metrics are proposed based on machine learning, and
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Fig. 4. Feature maps of Figs. 3. For each sub-figure, there are two rows.
First row: LBP maps (from the left to right are maps with radius values of
2 to 6 atan interval of 2 pixels). Second row: DLBP maps (with the same
arrangement rules as the first row).

Fig. 5. Joint histograms (from the left to right are the histograms with
radius values of 2 to 6 at an interval of 2 pixels). (a) Joint histograms of
reference image (baby); (b)-(c) Joint histograms of Gblur + JPEG distorted
image. Note that, compared to (b), (c) is calculated from image that suffers
from more serious Gblur distortion while it contains the equivalent intensity
to that of the JPEG distortion.

they usually operate in the subsequent three steps, including
feature extraction, model generation and quality prediction, as
shown in Fig. 6.

Fig. 6. The flowchart of the mainstream scheme of the learning-based NR-
IQA metrics.

Among those three steps, the feature extraction is generally
treated as the key point. For this point, in this paper, we
improve the LBP descriptor by considering a greater radius
to extract the microstructures and macrostructures of a given
image signal. After feature extraction, a regression algorithm
is used to learn a mapping from the feature vector (i.e.,
concentrated histogram Hc) to the quality score. Since the
SVR has been widely proven to be efficient in the NR-IQA
[10], [27], [33], this paper follows the previous works and
chooses the libSVM package [34] to implement the SVR
with the radial basis function as the kernel function. Notice
that we extract 60 features and such high dimensionality of
feature vector is easy to result in overfitting [35], [36]. Towards
settling the overfitting problem, the random subspace method
is introduced to be combined with the SVR for learning [36].

Then, given a test image, its quality can be predicted by
feeding its extracted features into the trained model. After
obtaining the predicted score, the performance of the proposed
method is calculated across the predicted scores and the
subjective ratings of test images. Since we do not require any
information from the reference image, the proposed method
belongs to the NR-IQA metric.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experimental Protocol
1) Database Description: Two public MD image databases

(MLIVE [37] and MDID 2013 [20]) are selected as the test
platforms. The MLIVE database is composed of two parts, Part
I and Part II. Each part contains 225 distorted images generated
from 15 reference images. In detail, the images in Part I
are corrupted by the Gblur+JPEG, while those in Part II are
processed by the Gblur+WN. Besides, MLIVE also contains
single distortion when the reference image is only corrupted by
one distortion type. Different from the MLIVE database, the
MDID 2013 database consists of images that are successively
corrupted by three kinds of distortions (Gblur+JPEG+WN). A
total of 324 distorted images are generated from 12 reference
images.
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2) Parameter Choice: There are three key parameters that
affect the performance of the proposed method: the patch size,
the radius value and the number of radii. In this paper, the
patch is of size ωR × ωR, where ωR = R − 1. Moreover,
three-scale radiuses (R) are chosen with values from 2 to 6 at
an interval of 2 pixels (more details are introduced in Section
IV-D).

3) Performance Evaluation Criteria: Three commonly used
criteria, i.e., Pearson linear correlation coefficient (PLCC),
Spearman Rank order Correlation coefficient (SRCC) and
root mean square error (RMSE) suggested by VQEG [38],
were employed to evaluate and compare the proposed method
with existing IQA metrics. To reduce the nonlinearity of the
predicted score, a five-parameter logistic regression function
is employed before PLCC and RMSE computation:

Qp = ξ1 · (
1

2
− 1

exp(ξ2 · (q − ξ3))
) + ξ4 · q + ξ5 (9)

where q is the raw score vector estimated using IQA metric;
Qp is the adopted quality vector; {ξ1, ξ2, ξ3, ξ4, ξ5} are the
parameters of logistic function.

B. Performance Comparison with FR-IQA Methods

To investigate the effectiveness of the proposed method, a
comparison was conducted with several state-of-the-art FR-
IQA metrics, including PSNR, SSIM [39], ADD-SSIM [40],
VSNR [41], Wang’s metric [42], VIF [43], FSIM [44], IGM
[45], and GMSD [46]. Since the proposed method is learning-
based, we randomly divided the dataset into two parts (80%
for training and 20% for testing) and report the median result
of the performance across 100 iterations. Table I shows the
experimental results. From Table I, we can find some meaning-
ful observations. At first, some classical methods (e.g., PSNR,
SSIM, and VSNR) generally obtain worse performance on the
MDID 2013 database. Second, the proposed method achieves
higher correlation and monotonicity with lower error on all the
tested databases. Third, the performance of selected metrics on
the MDID 2013 database is inferior to the MLIVE database.
The reason for the above phenomena can be attributed to the
following. First, conventional metrics are mainly designed for
single distortion with the hypothesis that the extracted features
have special relationship with the distortion. However, such a
relationship may be broken when facing multiple distortions.
Second, the image content becomes more complicated with
less regularity as the increment of distorted category. There-
fore, the performance on the MDID 2013 database is inferior
to the performance on the MLIVE database reasonably.

C. Performance Comparison with NR-IQA Methods

In this subsection, we compare the proposed method with
several mainstream NR-IQA metrics, including BRISQUE [9],
BLIINDSII [12], NFERM [10], NIQE [11], IL-NIQE [47]
and SSEQ [33]. For a fair comparison, all the learning-based
metrics follow the rules with the same 80 % - 20 % database
split and 100 iterations. The comparison results in the form of
median values are listed in Table II.

From Table II, we can find that the proposed method
performs consistently on the testing databases. It presents a
higher predictive accuracy and monotonicity than other NR-
IQA metrics. Similar to the comparison results in Section IV-
B, the performance of the selected methods on the MLIVE is
obviously superior to their counterparts on the MDID 2013.
For example, the performances of some metrics (e.g., NFERM
[10] and NIQE [11]) have relatively large difference. In addi-
tion, some selected NR-IQA metrics (e.g. NIQE [11] and IL-
NIQE [47]) exhibit poor performance on the testing databases.
In contrast, the proposed method obtains high performance on
both databases with relatively small differences.

To further demonstrate the superiority of the proposed
method, another comparison was carried out. The results
between the proposed method and recently reported MD IQA
metrics, including Li’s [18], Lu’s [17], GWH-GLBP [21],
FISBLIM [48] and SISBLIM [20] are listed in Table III.
All the results (except those of Li’s [18] and Lu’s [17]) are
calculated using the released codes provided by authors. For
comparison, both Li’s and Lu’s performance are directly taken
from the associated papers. Since only three bits after decimal
point are retained in Li’s and Lu’s works, we also processed
other metrics’ results accordingly. As seen, the proposed
method has obtained very encouraging results, outperforming
all the selected MD IQA metrics in terms of both monotonicity
and accuracy on the MDID 2013, MLIVE I and MLIVE II
databases. In particular, on the MLIVE I database, the SRCC
of proposed method exceeds 0.038 more than the GWH-
GLBP, which has obtained the best performance on the MD
IQA problem so far. Similar results can be obtained with
improvement of 0.013 on the MDID 2013 database. Although
the improvement is smaller, it is of vital importance for
the high-performance IQA. However, the proposed method is
slightly inferior to GWH-GLBP with respect to the PLCC and
RMSE on the whole MLIVE database. This may be because
it increases the difficulty of distinguishing the degradations
caused by Gblur+JPEG and Gblur+WN when MLIVE I and
MLIVE II are combined together. Since the GWH-GLBP is
operated on the gradient domain and utilizes the gradient mag-
nitude as the weight, it can well distinguish the degradations by
putting more emphasis on the image’s structural information.
In spite of this, its performance is inferior to the proposed
method when the degradation becomes more complex (e.g.,
with three distortion types). In summary, the proposed method
has a good ability to evaluate the quality of MD images.

TABLE III
SUMMARY OF EXPERIMENTAL RESULTS OF THE PROPOSED

METHOD AND COMPETING MD IQA METRICS

Database Metrics Li’s Lu’s GWH-GLBP FISBLIM SISBLIM Pro. Method
MDID 2013 SRCC - - 0.931 0.772 0.808 0.944

PLCC - - 0.941 0.734 0.811 0.948
RMSE - - 0.017 0.035 0.030 0.016

MLIVE I SRCC 0.887 0.908 0.920 0.853 0.868 0.958
PLCC 0.923 0.948 0.954 0.884 0.894 0.962
RMSE 7.300 - 5.773 8.813 8.462 4.424

MLIVE II SRCC 0.888 0.904 0.935 0.864 0.891 0.948
PLCC 0.900 0.937 0.942 0.883 0.902 0.957
RMSE 7.921 - 6.443 8.911 8.182 4.963

MLIVE SRCC 0.885 - 0.954 0.856 0.878 0.954
PLCC 0.901 - 0.960 0.880 0.895 0.959
RMSE 8.000 - 5.121 8.962 10.291 5.128

To draw a more reliable conclusion, the statistical analysis
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TABLE I
PERFORMANCE COMPARISONS WITH STATE-OF-THE-ART FR-IQA METRICS

Database Metrics PSNR SSIM ADD-SSIM VSNR Wang’s VIF FSIM IGM GMSD Pro. Method
MDID 2013 SRCC 0.5681 0.4890 0.7482 0.3906 0.8159 0.8301 0.6436 0.8095 0.8291 0.9439

PLCC 0.5604 0.4873 0.7984 0.4335 0.7790 0.8444 0.5817 0.8232 0.8283 0.9475
RMSE 0.0418 0.0443 0.0337 0.0468 0.0315 0.0283 0.0389 0.0298 0.0284 0.0162

MLIVE I SRCC 0.7392 0.8970 0.8892 0.8366 0.8805 0.9196 0.8322 0.8933 0.8766 0.9578
PLCC 0.7015 0.8494 0.8792 0.7877 0.8924 0.8788 0.8544 0.8559 0.8497 0.9621
RMSE 12.9036 8.4694 8.7678 10.4978 8.4394 7.5254 10.6238 8.6134 9.2218 4.4237

MLIVE II SRCC 0.7764 0.8947 0.8844 0.8052 0.8669 0.8945 0.8805 0.8831 0.8690 0.9482
PLCC 0.7088 0.8760 0.8583 0.7652 0.8767 0.8807 0.8642 0.8548 0.8420 0.9571
RMSE 11.7558 8.3311 8.7067 11.0628 8.8939 8.3400 8.8416 8.7522 9.2301 4.9632

MLIVE SRCC 0.7456 0.8915 0.8838 0.8117 0.8736 0.9030 0.8933 0.8859 0.8817 0.9541
PLCC 0.6965 0.8604 0.8566 0.7727 0.8852 0.8823 0.8635 0.8562 0.8519 0.9592
RMSE 12.6021 8.5692 8.8489 11.0454 8.4451 8.6582 8.4990 8.7744 8.9221 5.1282

TABLE II
PERFORMANCE COMPARISONS WITH STATE-OF-THE-ART NR-IQA METRICS

Database Metrics BRISQUE BLIINDS-II NFERM NIQE IL-NIQE SSEQ Pro. Method
MDID 2013 SRCC 0.8734 0.9145 0.8902 0.5704 0.5156 0.9100 0.9439

PLCC 0.8901 0.9218 0.9030 0.5724 0.5149 0.9194 0.9475
RMSE 0.0227 0.0193 0.0219 0.0417 0.0435 0.0194 0.0162

MLIVE I SRCC 0.9110 0.8955 0.9217 0.9102 0.9049 0.8983 0.9578
PLCC 0.9405 0.9307 0.9488 0.8724 0.8914 0.9310 0.9621
RMSE 6.3934 6.8729 5.9901 7.9338 8.1565 7.0283 4.4237

MLIVE II SRCC 0.8696 0.8867 0.8890 0.8482 0.8970 0.9077 0.9482
PLCC 0.9046 0.9137 0.9160 0.7944 0.8825 0.9235 0.9571
RMSE 7.7549 7.4447 7.3760 9.8810 8.2472 7.1430 4.9632

MLIVE SRCC 0.9022 0.9089 0.9170 0.8391 0.8912 0.9059 0.9541
PLCC 0.9260 0.9237 0.9386 0.7750 0.8777 0.9212 0.9592
RMSE 7.0193 7.2432 6.5263 10.2884 8.5778 7.2639 5.1282

was conducted for the comparison among various NR-IQA
metrics. Since both the NIQE [11] and IL-NIQE [47] are
free of learning, only five metrics are selected for further
validation. The analysis of variance test was conducted to
validate whether two IQA metrics had significant difference.
Table IV details the test results. For simplicity, we respectively
use number 1 to 6 to represent the proposed method, NFERM
[10], GWH-GLBP [21], BRISQUE [9], BLIINDS-II [12] and
SSEQ [33]. The symbol values of ‘1’, ‘−’ and ‘0’ indicate
that the method in the row is significantly better, comparable
or worse than the compared metric in that column (with 95%
confidence), respectively. In Table IV, each entry corresponds
to the results of the statistical test performed on the criteria
(from left to right: PLCC, SRCC, and RMSE). For instance,
the second 1 in entry “111” in line 1, column 2 indicates
the significant effect on SRCC. From Table I to Table IV,
we can conclude that the proposed method outperforms the
existing metrics in most cases. 1) It has the best performance
on all the selected databases. 2) The top three methods on
all the databases are the proposed method and GWH-GLBP
[21], and NFERM [10]. Specifically, NFERM [10] achieves a
mediocre performance in MDID 2013 database and a better
performance on the MLIVE database. Therefore, it is not
robust. In contrast, the proposed method exhibits relatively
high and stable performances on all the databases. Moreover, it
outperforms the GWH-GLBP [21] on the MLIVE II database.
3) In summary, our metric was significantly superior to other
metrics 49 times, and comparable with them 11 times in the
60 comparisons. To be specific, our method outperforms all
other metrics in MLIVE I, while it contains the advantage over

most of metrics in other databases. These findings supplement
Tables I and II in order to draw the conclusion that the
proposed method performs consistently well in all MD image
databases and outperforms most IQA metrics.

TABLE IV
STATISTICAL ANALYSIS AMONG DIFFERENT METRICS

MDID2013 MLIVE I

Metric 1 2 3 4 5 6 1 2 3 4 5 6

1 — 111 — 111 111 111 — — 1– 111 111 111

2 000 — 000 000 000 000 — — — 111 111 111

3 000 111 — 111 111 111 0– — — 111 111 111

4 000 111 000 — 000 — 000 000 000 — — —

5 000 111 000 — — — 000 000 000 — — —

6 000 111 000 — — — 000 000 000 — — —

MLIVE II MLIVE

Metric 1 2 3 4 5 6 1 2 3 4 5 6

1 — 111 — 111 111 111 — 111 — 111 111 111

2 000 — 000 0– — 0– 000 — 000 111 111 111

3 — 111 — 111 111 111 — 111 — 111 111 111

4 000 1– 000 — 0– — 000 000 000 — — —

5 000 — 000 0– — 0– 000 000 000 — — —

6 000 1– 000 — 1– — 000 000 000 — — —

D. Variation with Algorithm Parameters

Since visual acuity declines in an orderly fashion with
eccentricity [49], the radius value in the proposed method
cannot be infinitely large. As discussed in Section IV-A,
the number of radii, the radius value and patch size of the
proposed method have direct impacts on the final performance.
Therefore, it is meaningful to explore the relationship between
these characteristics and the performance. Because the spatial
interaction zone appears to be an elliptical shape [30], for
simplicity, we apply the square patch to represent it. Since it
is radially elongated, the patch size increases as the radius (R)
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increases. In this paper, the patch size is empirically set as ωR
× ωR, where ωR = R − 1. Meanwhile, the minimal radius
value is set as 2 pixels and increases at an interval of 2 pixels.
Thus, the radius number is the only factor that affects the
final results. Table V tabulates the PLCC value on MD image
databases under different radius numbers. Some meaningful
observations can be derived from the table as follows. 1) The
proposed method obtains a mediocre performance when the
radius number is 1. The reason can be attributed to the fact
that, only microstructure information is included when the
radius is small. 2) The PLCC value increases as the radius
number increases. Specifically, the proposed method achieves
encouraging results on all databases, even though the number
is only 2. In particular, the PLCC value exceeds 0.950 on the
MLIVE I database and outperforms most metrics. 3) After
reaching the peak (when the radius number is 3), the PLCC
value then slowly declines. In summary, the performance is
always competitive with respect to the other metrics when the
radius number changes from 2 to 4, which demonstrates the
robustness of the proposed method. Therefore, in this paper,
the radius number is set as 3.

TABLE V
NUMBERS OF RADIUS EFFECT ON PLCC

Number of Radius Number
Database 1 2 3 4

MDID 2013 0.9195 0.9448 0.9475 0.9159
MLIVE I 0.9332 0.9502 0.9621 0.9483
MLIVE II 0.8972 0.9382 0.9571 0.9211
MLIVE 0.9052 0.9291 0.9592 0.9257

E. Performance on Authentic Image Distortions

As previously proven, the proposed method achieves en-
couraging performance on both the MLIVE and MDID
databases. However, both of them are generated by using
synthetic distortions through combining different types of
human-made distortions. Advanced image capture devices,
including mobile phones, digital video cameras and wearable
devices, allow us frequently and conveniently to acquire im-
ages. Therefore, it is meaningful and interesting to design an
objective assessment method for distorted images by commer-
cial consumer products [50]. In this paper, we further test and
compare the proposed method with several NR-IQA methods
on the CLIVE (LIVE in the wild image quality challenge
database) database [51], [52]. It includes 1162 distorted images
captured using typical real-world mobile cameras with various
authentic image distortions, such as low-light blur, noise, mo-
tion blur, overexposure, underexposure compression errors and
their various combinations. Table VI shows the experimental
results. As seen, all traditional metrics merely obtain a general
performance (e.g., PLCC is less than 0.63), while the specific
metric (FRIQUEE [4]) for authentic image distortions obtains
the best performance. The mediocre performance indicates
that traditional IQA metrics are far from the usefulness in
the real field. Fortunately, the proposed method is superior
to all competing traditional metrics, which strengthens our
confidence and plays a guiding role in future work. Although

difficulties exist in tackling the quality assessment problem
of authentic image distortions, as the ultimate aim, it is the
challenge of the infinite charm of the IQA that attracts us to
conquer it.

F. Discussions

The MD IQA is faced with great challenges. Inspired
by the human visual mechanism, we propose an effective
NR-IQA metric. Our method has been shown to achieve
encouraging performance on the MLIVE and MDID2013
databases. The superior performance originates from using the
IMLBP to extract both the local structural and macrostructural
information. Although the proposed method has achieved a
fairly good performance on the MD IQA, it merely obtains
general performance on authentic distortions as with other IQA
metrics. The performance can be further improved through
the following attempts. First, other LBP descriptors (such
as the neighborhood intensity LBP) can be integrated into
the proposed method and form more robustness descriptor.
Second, the patch filter can be replaced with other efficient
filters, for instance the Gaussian filter, the maximum filter and
the mean filter, to further improve the results. Third, more
features that represent image details, such as global structural
information, color information, frequency information and
more, can be introduced to achieve better performance results.
In the future, we plan to incorporate the features used in our
model and those extracted from FRIQUEE to propose a higher-
performance blind quality metric.

V. CONCLUSION

In this paper, we present an effective NR-IQA algorithm to
estimate the MD image quality. Inspired by the human visual
mechanism, the improved multi-scale LBP descriptor is pro-
posed to extract the local microstructural and macrostructural
information. Then the statistical histograms of the feature maps
that are highly relevant to the image quality are calculated
as the input of the SVR model for training the effective
IQA metric. The effectiveness is validated on public MD
image databases. The experimental results demonstrate that
the proposed method outperforms most selected state-of-the-
art FR-IQA and NR-IQA metrics. Moreover, the results on the
CLIVE database further validate its potential for the quality
assessment of authentic image distortions.
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